COVID-19 as Viewed by The Pathologist: A Rapid Literature Review

Francesco Callea, MD. PhD.

Department of Pathology and Molecular Histopathology, Catholic University and Bugando Medical Centre, Mwanza, Tanzania.

ABSTRACT

The current coronavirus outbreak represents a severe threat to public health worldwide. Finding measures to properly manage and prevent the epidemic is ongoing, right now practitioners and public health authorities need immediate, actionable information. Basic science and medical scientific disciplines have quickly produced a quantity of publications never seen with other emergencies, with a risk of exaggerated information and non-evidence-based measures.

This rapid literature review of PubMed/MEDLINE publications from January 20 to April 20, 2020 using COVID-19 as main key-word resulted in over 6,000 articles, with around 600 reviews. The contributions were subsequently clustered in subgroups according to journal sources and preselected areas of reference.

Results were aggregated into 4 categories: supported, promising controversial and critical data.

This Review has revealed a major criticality: only seven pathology articles were based on post-mortem material (minimally invasive autopsies/biopsies). Dealing with an unknown disease, autopsies are indispensable to understand pathogenetic mechanisms, in order to rationalize therapeutic interventions. Even more important is to adopt a dedicated protocol aimed at correlating pathological findings with disease duration, patient location (home, hospital ward, ICU), and, for each period, symptoms, and treatment. Autopsy reports should not be released before a multidisciplinary discussion by hospital Root Cause Analysis or Morbidity/Mortality conferences. Telepathology is not a suitable means for such studies.

KEYWORDS

COVID-19, Rapid literature review, Pathology.

Introduction

The 2019-nCoV (COVID-19) pandemic is a world emergency alerting global health institutions. Effective management and prevention of epidemics takes time, but practitioners and public health authorities (PHAs) still need precise, scientific data and actionable information.
SARS-CoV-2 is a new coronavirus affecting any age with most
Structure and epidemiology of the virus. Virus transmission is human-to-human mostly via aerosol,
No specific treatment is available. Lung involvement results in an interstitial pneumonia.
Early symptoms can be non-specific (flu-like syndrome) or...
Major complications include cytokine storm and coagulation...
In children and healthy adults, the infection runs an...
Diagnostic tools.

The present rapid literature review (RLR) aims to extrapolate,
and critically assess useful and controversial data from scientific articles on COVID-19.

Widespread knowledge of COVID-19 has been traced to December
30, 2019, urgent PreMED (International Society for Infectious Diseases, http://www.isid.org) communication by the Wuhan Medical Health Committee about a pneumonia of unknown origin. On December 31, a more detailed notice was adding that a series of patients from the South China Seafood Market in Wuhan had exhibited the same pneumonia [4]. On January 8, 2020, a coronavirus was isolated and recognized as the causative agent of the pneumonias [5]. The genome sequence was made publicly available to the scientific community [6], showing that SARS-CoV-2 belongs to the β-coronavirus genus, with 79.0% nucleotide identity to SARS-CoV and 51.8% identity to MERS-CoV. Soon after, it was reported that the nCoV-19 is 96% identical across the entire genome to a bat coronavirus [7]. This information immediately resuscitated the neglected debate following the characterization of a chimeric virus produced in laboratory, expressing the spikes of a bat coronavirus SHCo14 in a mouse adapted SARS-CoV backbone in 2015 [8]. As the bat SARS-like coronavirus was shown to use Angiotensin Converting Enzyme (ACE2) receptors to enter the target cells similar to the nCoV-19 [9], it was suggested that the bat coronavirus could have potential for human emergence [8]. The 2019 nCoV, renamed COVID-19, rapidly spread from Wuhan to the Hubei region and soon after outside China, involving all countries of the world. On March 11, 2020, the WHO has declared the COVID-19 outbreak a pandemic, which has caused more than 4 million infections and over 300,000 deaths.

Study Methodology
Various methods for RLR have been developed [10], with modifications adopted to increase the speed and focus compared to full systematic reviews [11]. The RLR herein further simplifies the methodology, considering the global emergency and short time period. Moreover, only one reviewer conducted the study selection and data extraction [10]. The RLR was conducted in three steps: developmental (strategy, question and inclusion criteria), processing (screening of titles, abstracts, and full text articles selected for retrieval – including hand searches of reference lists, data extraction), and reporting of results. The literature search was conducted via PubMedR/MEDLINE using keywords: main term: COVID-19; time limits: January 20—April 20, 2020; language: English and Asian with English abstract, journals and topics per Journals selected according to main aim of the study.

Evidence was ranked to provide a simple overall picture of the state of the literature. Considering strength of evidence, direction of findings, consistency, generalizability and applicability, and total body of evidence for intervention questions, appropriateness of ranking resulted into four categories: a) supported, b) promising, c) controversial, d) critical data.

Results
The PubMed search resulted in 6122 papers, including 619 reviews. Articles were clustered according to journal source and mission/competence, totaling 383 journals, topics and topics per Journal. Publications dealing with histopathological observations are summarized in Table 1.

Given the lack of knowledge on COVID-19, its virulence, spreading and pathogenicity, analysis of publications focused mainly on selecting data of potential use for disease management and adjunctive countermeasures in diagnosis and treatment, according to the emerging body of evidence, classifying results into four groups:

Supported data present in articles [12] and reviews [13]:
• SARS-CoV-2 is a new coronavirus affecting any age with most severe course in elderly, medically compromised and more vulnerable people.
• In children and healthy adults, the infection runs an asymptomatic or mild course.
• Early symptoms can be non-specific (flu-like syndrome) or rather specific (anosmia/ dysgeusia).
• Lung involvement results in an interstitial pneumonia.
• Major complications include cytokine storm and coagulation problems (thrombotic microangiopathy, thromboembolism, disseminated intravascular coagulation -DIC-).
• Respiratory failure, heart failure and coagulopathies are the causes of death.
• Other organs may be affected: CNS, GI tract, cardiovascular and urinary systems skin, and skeletal muscle.
• Virus transmission is human-to-human mostly via aerosol, but also possible via saliva, urine, tears, and feces.
• Structure and epidemiology of the virus.
• Diagnostic tools.
• No specific treatment is available.

Promising data
Promising data refer to the mechanisms of virus-host cell interaction representing the preliminary requirements for prevention and treatment.

Chymotrypsin-like protease (CLP) inhibitors of SARS-COVID-2 have been identified [14]. Remdesivir seems capable of inhibiting CLP function [15]. Based on knowledge of the mechanism of cell attack by CoV-2, monoclonal antibodies are being produced [16]. Recovered COVID-19 patients raised IgM and IgG antibodies [17]. Thus, passive immunization with fresh plasma from convalescent or recovered patients is being attempted [18]. Circulating specific IgM and IgG antibodies are being tested to establish neutralizing capability and titers over time.
Table 1. COVID-19 published histopathological papers.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Cases N*</th>
<th>Autopsy</th>
<th>Specimens</th>
<th>Postmortem biopsy</th>
<th>Histopathological lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xu Z, et al. Lancet Resp Med</td>
<td>M: 50 years</td>
<td>_</td>
<td>Lung, heart, liver</td>
<td>Yes</td>
<td>No DAD Aspiration and bacterial pneumonia</td>
</tr>
<tr>
<td>Tian S, et al. Modern Pathology</td>
<td>M: 59 years</td>
<td>_</td>
<td>Lung, heart, liver</td>
<td>Yes</td>
<td>DAD, multinucleate giant cells Interstitial inflammation, cytopathic changes</td>
</tr>
<tr>
<td>Karami P, et al. Travel Med Infect Dis</td>
<td>M: 27 years</td>
<td>Yes (partial)</td>
<td>Lung</td>
<td>_</td>
<td>DAD + cytopathic damage</td>
</tr>
<tr>
<td>Su H, et al. Kidney International</td>
<td>26 patients: 19 F & 7 M; mean age 69 years</td>
<td>_</td>
<td>Kidney</td>
<td>Yes, all patients</td>
<td>Diffuse proximal tubule damage and necrosis; electron microscopy (EM): presence of viral particles</td>
</tr>
<tr>
<td>Yao XH et al. Zhonghua B L X</td>
<td>3 M patients</td>
<td>Minimally invasive</td>
<td>Lung, heart, intestine, skin, liver, Bone marrow, kidney</td>
<td></td>
<td>DAD, minimal inflammation, small vessel thrombi, multinucleate giant cells, Edema, patchy inflammation, pneumocyte hyperplasia, multinucleate giant cells</td>
</tr>
</tbody>
</table>

Table 2. Relevant information on patient’s history for autopsy finding correlation.

<table>
<thead>
<tr>
<th>Stay</th>
<th>Duration (days)</th>
<th>Symptoms</th>
<th>Coagulation tests</th>
<th>Inflammatory screening</th>
<th>Treatment (type and duration)</th>
<th>Treatment (assessment of efficacy)</th>
<th>Cov-2 RT-PCR</th>
<th>IgA</th>
<th>IgM</th>
<th>IgG</th>
<th>Known comorbidities</th>
<th>Death diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td></td>
</tr>
<tr>
<td>Hospital</td>
<td></td>
</tr>
<tr>
<td>ICU</td>
<td></td>
</tr>
</tbody>
</table>

Autopsy reporting protocol (proposal)

Post-mortem findings:

A. Macroscopy
B. Microscopy
C. Preexisting pathology
D. Acute pathology (COVID-19 related lesions)
E. Pathomorphogenesis of the lesions
F. Mechanism of death
G. Multidisciplinary conferences (RCA and M/M) for clinical-pathological correlation (lesions-symptoms and vice-versa)
H. Epicrisis (including timing of the lesions)
I. Needs for further pathological and virological investigations, including ancillary techniques
Controversial data
- Origin of SARS-CoV-2
- Radiological findings
- Treatment and mechanism of action of non-specific drugs
- Role of SARS-CoV-2 in triggering organ pathology

Coronaviruses are zoonotic viruses that can infect both humans and various animals [9,10]. The human SARS-CoV-2 seems to have derived from the homologous strain from bat [19] and is genetically distinct from SARS-CoV and SARS-MERS, whose intermediate hosts were masked palm civets and camel, respectively. The SARS-CoV-2 appears to be a recombinant virus between the bat coronavirus and an origin-unknown coronavirus [19]. Furthermore, SARS-CoV-2 has most similar codon usage bias with snake. Altogether, these observations suggest that homologous recombination may occur and contribute to SARS-CoV cross-species transmission [20]. It remains unclear whether an intermediate host, such as snake, cat, dog sold in Wuhan seafood market, was involved before the virus jumped to humans [21].

These phenomena suggest that new coronavirus epidemics could easily reappear. Additionally, the possibility that physics or atmospheric agents, as well as genetic engineering, might produce mutations cannot be ruled out.

COVID-19 presented originally as a severe pneumonia of unknown cause [3]. Chest radiographic (CXR)s and CTs findings [22], and ground glass opacity have emphasized consolidation as consistent features for interstitial pneumonia. Interpretation of lung imaging and clinical deterioration have led to extensive use of mechanical ventilators in Intensive Care Units (ICUs). Following the emergence of severe complications, such as thrombotic microangiopathy, venous thromboembolism and DIC, interpretation of imaging has been revised with CT pulmonary angiography instead of non-contrast chest CTs [23] and adjusted to patient management [24].

No specific treatment and no approved specific antivirals for COVID-19 are available to-date. Therefore, multiple drugs, mostly in combination, are being empirically employed.

Chloroquine, an antimalarial drug known for its anti-inflammatory and antiviral effects, widely used in autoimmune disorders, has shown encouraging results [25]. Better results have been reported with HCQ combined with Azithromycin [26], or HCQ and Remdesivir [27]. Moreover, some potential antiviral agents have been administered with controversial or unsatisfactory results [28].

In addition, two main detrimental processes have been recognized: cytokine storm and coagulation disturbances. Cytokine storm plays a major role in worsening the inflammatory process in COVID-19 pneumonia. Tocilizumab seems to slow down inflammation due to its anti-interleukin-6 and immunomodulation action [29]. Coagulation disturbances can be prevented or cured by anticoagulants (low molecular weight heparins – LMWH) [30].

The role of SARS-CoV-2 in triggering organ or systemic pathology is due to the capacity of spike proteins to bind ACE2 receptors expressed in a number of epithelial cells [31] and to cause cytotoxic effect, symptoms and further spread of contagion. The major cell targets are type II pneumocytes, enterocytes, renal tubular cells, myocardial capillary pericytes and endothelial cells. The expression of ACE 2 receptors is highly increased in patients with basic cardiovascular disease. The pericyte injury due to virus infection may result in capillary endothelial cell dysfunction, inducing microvascular dysfunction [32]. The oral cavity contains plenty of ACE2 receptors, thus explaining why contagion can spread through saliva.

Authors have reported nCoV particles on EM in endothelial cells [33] and in renal tubular cells [34], but the latter finding has not been confirmed [35].

Pathogenesis of the coagulation disorders is not completely understood.

Critical data
Most unsolved/unanswered questions are attributable to the lack of extensive anatomo-pathological studies. Histopathology represents the main source of information for understanding disease process initiation and progression. This RLR found seven histopathological reports, with surgical [36], post-mortem core biopsies [34,37-39], or minimally invasive autopsies [40,41].

In all publications, sections on Histopathological Results and relative figures were focused mainly on lung: diffuse alveolar damage, foreign body aspiration, hyaline membranes, mixed neutrophil-lymphocyte-macrophages infiltration, hyperplastic pneumocytes, intra-alveolar shedding, or presence of megakaryocytes, cytopathic cytoplasmic changes of viral antigen containing pneumocytes and macrophages. The description of other organs was very poor or lacking.

Indeed, the section “Histopathological findings” from publications consists of a list of lesions without clinical-pathological correlation or discussion on pathomorphogenesis.

The lack of COVID-19 autopsies and the incomplete reporting of histological findings could depend on: (i) overall decline in numbers of hospital autopsies over the last 50 years [42], (ii) high risk, (iii) oblivion of the basic methodology and importance of post-mortem examination for unknown disease.

In 1978 the NEJM has suggested their revival also for cases with known cause of death [43]. The autopsy reports contain detailed description, interpretation of the lesions, clinical-pathological correlations and epiretifs, thus enormously differing from “Histopathological findings” sections from publications.

A call for action and need for autopsies to determine the full extent of organ involvement was launched on March 16, 2020 [44]. Indeed, with new diseases like COVID-19, extensive tissue studies
are indispensable to understand the pathomorphogenesis of the lesions, the natural history and their modifications after treatment. This necessity overwhelms any refrain in performing autopsies even in case of pandemic.

Discussion

This RLR on COVID-19 has revealed an imbalance between scientific effort and resulting knowledge. In the absence of specific drugs and effective vaccine, management and treatment have been necessarily empirical.

Measures to prevent contagion and recognition of symptoms, such as anosmia and dysgeusia, i.e., virtually diagnostic, are important. Respiratory failure can occur rapidly with cough worsening and oxygen desaturation. Imaging investigations may reveal ground-glass opacities and patchy consolidation. Further, in disease course, a cytokine storm, coagulation problems, renal and heart failure may develop causing death.

Considering the clinical pathway for early diagnosis and all data from this RLR, a logical management of COVID-19 patients could be envisaged. People presenting early anosmia and dysgeusia [45] should be considered infected and isolated before performing a swab in order to prevent contagion spreading. Further, they should be clinically monitored at home or hospitalized according to symptoms severity.

If flu-like symptoms appear, first line of treatment may consist in using hyperimmune plasma or monoclonal anti-CoV-2 antibodies combined with antivirals, anti-inflammatory and antibiotics, to try preventing disease progression and pulmonary involvement. The confirmation of clinical diagnosis requires nucleic acid testing by RT-PCR. The tests are being performed on oro- and nasopharyngeal swab. However, saliva could be a suitable material for a safe diagnostic purpose [46].

Symptomatic hospitalized people should undergo radiological evaluation (standard Rx, CT angiography), and undergo prophylactic anti-interleukin drugs and anticoagulants to prevent or slow down cytokine storm and coagulopathies respectively. IgM and IgG testing are expected to allow for identifying virgin, infected, recovering and short-term or long-term immunized persons.

Given the above, access to ICUs as well as mortality rate should drop. Non-surviving patients should be autopsied with caution due to the hazard level in adequately equipped morgue structures [47].

In a time of pandemic, an instructive model from the XIX century may become again topical. Bypassing the historical rivalry between the famous Koch and Pasteur Institutes, Alexandre Yersin rushed to Hong Kong to identify the causative agent of the plague epidemic [48].

With regard to the shortage of tissue samples, pathologists are looking to collect specimens by establishing a COVID-19 Pathology Consortium and share results by telepathology in view of a pathology repository.

The results from this RLR have increased the consciousness of urgent understanding of tissue damage mechanisms and pathology progression that is the only means to rapidly proceed to rationalize therapeutic approaches before a vaccine becomes available.

The methodology to perform autopsies by the father of the Modern Pathology, J.B. Morgagni in 1761, again becomes topical, as based on the search for lesion-symptom correspondence and vice versa [49]. That has given anatomic theater the privileged definition of places where "death is pleased to help the living". Obviously Morgagni’s principles need to be contextualized within the COVID-19 scenario, according to the requirements of Modern Medicine that, after shattering the walls among the four classic watertight compartments of medicine (research, education, laboratory service and clinical care) has decreed the transition from MD-physician to MD-researcher then to PhD-scientist and the identification of diagnostic and research activity [50]. Relevant clinical information related to disease duration, place and time of the patient’s stay (home, hospital ward, ICU), each of them recording symptoms and treatment, coagulation/inflammatory test, host-virus immunological state, comorbidities, clinical diagnosis of death should be evaluated together with histopathological findings (Table 2). Each autopsy report should be discussed within the hospital by multidisciplinary teams by Root Cause Analysis or Morbidity/Mortality conferences [51].

At this stage and for the aim of the study, telepathology is not recommended as a fruitful instrument [52]. It is hoped that the above methodology will increase the knowledge on COVID-19, allowing more logical and effective interventions to prevent/slow-down/treat the disease, and interrupt the cascade of precipitating events.

Indeed, it would seem that COVID-19 is more than (only) a Severe Acute Respiratory Syndrome.

Acknowledgement

The Author wishes to thank Helen Banks for English language revision, Dr. Marialuisa Corbeddu for editorial assistance, and the Italian No-profit Association Friends Raising ONLUS for supporting the Master in Pathology program in Mwanza, Tanzania [52].

References

3. Brandt AM, Botelho A. Not a Perfect Storm - Covid-19 and
36. Tian S, Hu W, Niu L, Liu H, Xu H, Xiao SY. Pulmonary...

49. Morgagni JB- De sedibus et causis morborum per anatomen indagatis. Ex Typographia Remondiniana, Venetiis, 1761.

